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LETTER TO THE EDITOR 

On a medium constraint arising directly from Maxwell’s 
equations 

Werner S Weiglhofer 
Depxtment of Mathematics, University of Glasgow, Glasgow GI2 8QW, UK 

Received 19 September 1994 

Abstract The mathematical structure of Maxwell’s eqlLltions provides a consvaiot an the 
constioltive parameters of linear homogeneous media. This is exemplified by showing that the 
non-reciprodry panmeter of bi-isotropic media is supprfluous, confirming independent m l t s  
(based on covariance and uniqueness arguments) that non-reciprocal bi-isotmpic media do not 
exist. 

Artifically tailored, complex materials are currently widely studied by materials scientists 
because they offer exciting prospects for technological applications from the microwave to 
the optical regimes. These experimental activities have spawned a wave of new interest 
at the theoretical level to gain a better understanding of electromagnetic wave propagation, 
radiation and scattering in complex media. In electromagnetics, the most general linear 
material is the so-called bi-anisotropic medium. Such a substance is characterized by a 
large number of parameters (36 complex scalars, to be exact), which, ideally, would follow 
from a quantum-statistical description of bulk matter. Needless to say, such models are 
still in their infancy. Whatever is available is based on more or less sophisticated effective 
medium theories such as long-wavelength scattering models [I]. 

There has been a longstanding tradition to provide constraints on medium parameters, 
i.e. relations that reduce the number of degrees of freedom of a certain type of material 
as a consequence of certain requirements. Significantly, such requirements are generally 
derived from physical conditions [Z, 31, losslessness and reciprocity being just two examples 
(reciprocity is the symmetry of action and reaction in a given medium). 

Much less attention has been paid to constraints arising from the structure of the 
governing differential equations (Maxwell’s equations) themselves. 

To investigate the mathematical structure of Maxwell’s equations with a view to a 
parameter constraint provides the motivation for this letter. It consists of a simple and 
straightforward exercise and will be pursued here for a general bi-isotropic medium. 
Reciprocal bi-isotropic media, more commonly known as chiral media, are found abundantly 
in nature and can also be manufactured in the form of synthetic particulate composites 14-71, 

While a chiral medium is characterized by three medium parameters. a general 
non-reciprocal bi-isotropic medium (the most general medium with direction-independent 
parameters) requires four scalars for its description. However, the great interest in the latter 
[7,8] during recent years is doubly surprising: first, mathematical generalizations of the field 
solutions for chiral media, which are usually available in closed form, to the non-reciprocal 
bi-isotropic case are mostly trivial; and second, and more importantly, there is currently 
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no experimental evidence that non-reciprocal bi-isotropic media exist in either natural or 
manufactured forms 19, IO]. 

The purpose of this letter is therefore twofold. On the one hand, we want to draw 
attention to mathematical structures hidden within Maxwell's equations which lead directly 
to a parameter constraint and thus limit the admissible media. On the other hand, by 
choosing a general bi-isotropic medium for this exercise, the repercussions of this parameter 
constraint will shed some new light on the concept of reciprocity in the context of bi-isotropic 
media. 

Maxwell's equations for frequency-dependent fields are given by 

V x H(I,  w )  + iwD(z,  w )  = J(I, w )  

V x E(=,  o) - i o B ( I ,  w )  = 0 

(1) 

(2) 

The electromagnetic field phasors E, H, D and B depend on the spatial coordinate vector 
I and the circular frequency w, an exp(-iot) time-dependence is suppressed throughout 
(the frequency domain is chosen simply for convenience; conversion of the results obtained 
in this letter to the time domain is straightforward). It is apparent that (3) and (4) are not 
independent of the curl equations (1) and (2) because, implicitly, the electric charge density 
p and the electric current density J fulfil the continuity equation 

V . J(I ,  w )  - iwp(z, w )  = 0. (5) 

Therefore, it becomes clear that (1)-(4) do not form a self-consistent system of differential 
equations for the complete determination of the fields E ,  H ,  D and B. Two more equations 
need to be added (and, if the medium is finite, appropriate boundary conditions must be 
formulated). These are commonly known as constitutive relations because they contain 
information about the material properties of the medium under consideration. 

The constitutive relations of general homogeneous bi-isotropic media in the Boys-Post 
form [ l  11 can be stated as 

D(I, 0) = d w ) E ( z ,  o) + (do) + B(w))B(z, w )  

H(I,  0) = (-ab) + B(w))E(%.w) + B ( x ,  w ) / P @ )  

(6) 

(7) 

where, as is common in modern physics literature, E and B are taken to be the primitive 
fields whereas D and H are the induction fields. Four frequency-dependent parameters 
describe a homogeneous general bi-isotropic medium: permittivity 6, permeability p,  
chirality parameter B and non-reciprocity parameter 01 (all functions of frequency w). The 
widely available chiral (i.e. reciprocal bi-isotropic) media arise when the specialization 
a(@) = 0 is made [121. 

The stage is now set to eliminate the induction fields D and H from Maxwell's 
equations (1) and (3) by using (6) and (7). One finds 

V x B(I ,  w ) / p ( w )  + ioe(w)E(z,  o) + 2iopB(z.  w )  

+ ( -a (w)  + B(o))[V x E ( = ,  w )  - ioB(x,  0)) = J(I ,  w) (8) 

(9) d O ) V  ' E ( = ,  0) + (@) + B(w))[V ' B(z,  4 1  = P ( I .  w ) .  
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By using the two differential equations (2) and (4). which only contain the primitive fields, 
the terms which weregrouped i n  square brackets vanish identically. Then, the following self- 
consistent system of partial differential equations for the primitive fields E ( r ,  o), B(z ,  o) 
arises: 

V x B(z, o)/p(o) + ioc(o)E(z,  o) + 2iwBB(z, w )  = J(z, o) 

V x E ( z ,  w )  - iwB(z, o) = 0 

E(w)V. E(=, U )  = P ( Z ,  W )  

v . B(z,o) = 0. 

(10) 

(11) 

(12) 

(13) 

The key observation relating to (l0)-(13) is that the non-reciprocity parameter ci does 
not occur in them. This independence of the governing differential equations of the non- 
reciprocity parameter a means that instead of employing (6) and (7) one could equally well 
have used the constitutive relations 

i.e. those of a chiral medium, to arrive at (10)-(13). 
The mathematical manipulations above, simple as they are, nevertheless lead to an 

important result. When the governing differential equations are written in terms of the 
primitive fields only, they are seen to be insensitive to the fourth parameter (i.e. the non- 
reciprocity parameter a) of a general bi-isotropic medium. Now, E and 3 are the phasors 
of the primitive fields, i.e. of the physically relevant fields. Other quantities, such as power 
flux, radiation loss etc, can be derived directly from them. 

Throughout history, physical theories have been motivated by a quest for simplicity. 
Guided by Occam’s razor or the principle of parsimony, this quest is an attempt to minimize 
the number of input parameters. Consequently, the foregoing analysis leads to the inevitable 
conclusion that the non-reciprocity parameter ci is unnecessary in the description of bi- 
isotropic media. It is therefore prudent to set 

a ( w )  = 0 for all w .  (16) 

Thus, in the context of bi-isotropic media, non-reciprocity is a supertluous concept. Bi- 
isotropic media are always reciprocal, i.e. they are necessarily chiral. 

Bi-isotropic media fall into the class of linear magnetoelectric materials which are 
inherently bi-anisotropic. A considerable amount of experimental work, predominantly 
carried out in the 1960s. was mostly aimed at establishing the material properties of 
such magnetoelectric substances as chromium sesquioxide (CrzO3). These studies were 
not primarily intended to address the question of the existence or non-existence of a non- 
reciprocal bi-isotropic medium, yet a detailed investigation of the experimental literature, 
conducted recently by Lakhtakia 191 (see also for detailed references to experimental studies), 
has comprehensively shown that experimental work to date has failed in establishing the 
existence of a non-reciprocal bi-isotropic medium. Furthermore, the so-called Tellegen 
medium [13], often used as an example for a non-reciprocal bi-isotropic medium, has never 
been synthesized. Indeed, closer inspection [lo] shows that the Tellegen medium is not 
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distinguishable from a simple dielectric-magnetic medium in any performable experiment, 
and is therefore pathological. 

The main emphasis here is to show how a constraint on medium parameters can arise 
directly from the differential equations. In the case of bi-isotropic media, the constraint 
turns out to be equivalent to a requirement for reciprocity. The present result is vindicated 
by investigations of the most general linear homogeneous media. Bi-anisotropic materials 
are characterized by the constitutive relations 

O(X,  0) = do) - . E ( ~ ! w )  + @(w) - + - P(w))  . B(e, 01 

H ( x ,  W )  = (-do) + @ ( U ) ) .  E(=, W )  + - P- ' (w)  B(E, U )  

(17) 

(18) 

- 

- - - - 

where 5, f i ,  cf, are now dyadics (3 x 3 Cartesian tensors). It was established 
independently, through requirements for general covariance [14,15] and uniqueness [16]. 
that a homogeneous bi-anisotropic medium must obey the uniformity constraint 

- = - -  

Trace@(w)) - = 0 for all W .  (19) 

It is important to note that constraint (19) does not imply reciprocity for a bi-anisotropic 
medium, it simply provides one algebraic relation for the 36 medium parameters to fulfil; 
yet on application to the special bi-isotropic case, requirement (16) is recovered from 
relation (19). 

Quite clearly, constraint (16) has been derived as a consequence of the mathematical 
structure of Maxwell's equations, and not because of any considerations of the physical 
nature of the bi-isotropic medium. 

I am indebted to Dr A Lakhtakia for many fascinating discussions on many fascinating 
topics. 
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